多少数据可使用单因素方差分析软件

原理/方差分析
方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:(1) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。(2) 实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和表示,记作SSb,组间自由度dfb。总偏差平方和 SSt = SSb + SSw。组内SSw、组间SSb除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSb>>MSw(远远大于)。MSb/MSw比值构成F分布。用F值与其临界值比较,推断各样本是否来自相同的总体。
基本思想/方差分析
方差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。举例分析:下面我们用一个简单的例子来说明方差分析的基本思想:如某克山病区测得11例克山病患者和13名健康人的血磷值(mmol/L)如下:方差分析患者:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11健康人:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87问该地克山病患者与健康人的血磷值是否不同?从以上资料可以看出,24个患者与健康人的血磷值各不相同,如果用离均差平方和(SS)描述其围绕总均值的变异情况,则总变异有以下两个来源:组内变异,即由于随机误差的原因使得各组内部的血磷值各不相等;组间变异,即由于克山病的影响使得患者与健康人组的血磷值均值大小不等。而且:SS总=SS组间+SS组内 v总=v组间+v组内如果用均方(离差平方和除以自由度)代替离差平方和以消除各组样本数不同的影响,则方差分析就是用组间均方去除组内均方的商(即F值)与1相比较,若F值接近1,则说明各组均值间的差异没有统计学意义,若F值远大于1,则说明各组均值间的差异有统计学意义。实际应用中检验假设成立条件下F值大于特定值的概率可通过查阅F界值表(方差分析用)获得。利用统计软件分析结果如下:input type num @@;1 0.84 1 1.05 1 1.20 1 1.20 1 1.39 1 1.53 1 1.67 1 1.80 1 1.87 1 2.07 1 2.112 0.54 2 0.64 2 0.64 2 0.75 2 0.76 2 0.81 2 1.16 2 1.20 2 1.34 2 1.35 2 1.48 2 1.56 2 1.87;model num=
离差平方和
SS组间(处理因素)
0.0193(有统计学意义)
SS组内(抽样误差)
应用/方差分析
方差分析主要用途:①均数差别的显着性检验,②分离各有关因素并估计其对总变异的作用,③分析因素间的交互作用,④方差齐性检验。在科学实验中常常要探讨不同实验条件或处理方法对实验结果的影响。通常是比较不同实验条件下样本均值间的差异。例如医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同化学药剂对作物害虫的杀虫效果等,都可以使用方差分析方法去解决。协方差分析一个复杂的事物,其中往往有许多因素互相制约又互相依存。方差分析的目的是通过数据分析找出对该事物有显着影响的因素,各因素之间的交互作用,以及显着影响因素的最佳水平等。方差分析是在可比较的数组中,把数据间的总的“变差”按各指定的变差来源进行分解的一种技术。对变差的度量,采用离差平方和。方差分析方法就是从总离差平方和分解出可追溯到指定来源的部分离差平方和,这是一个很重要的思想。经过方差分析若拒绝了检验假设,只能说明多个样本总体均值不相等或不全相等。若要得到各组均值间更详细的信息,应在方差分析的基础上进行多个样本均值的两两比较。多个样本均值间两两比较多个样本均值间两两比较常用q检验的方法,即Newman-keuls法,其基本步骤为:建立检验假设-->样本均值排序-->计算q值-->查q界值表判断结果。多个实验组与一个对照组均值间两两比较多个实验组与一个对照组均值间两两比较,若目的是减小第II类错误,最好选用最小显着差法(LSD法);若目的是减小第I类错误,最好选用新复极差法,前者查t界值表,后者查q'界值表。
主要内容/方差分析
分析方法根据资料设计类型的不同,有以下两种方差分析的方法:1、对成组设计的多个样本均值比较,应采用完全随机设计的方差分析,即单因素方差分析。2、对随机区组设计的多个样本均值比较,应采用配伍组设计的方差分析,即两因素方差分析。两类方差异同两类方差分析的异同:两类方差分析的基本步骤相同,只是变异的分解方式不同,对成组设计的资料,总变异分解为组内变异和组间变异(随机误差),即:SS总=SS组间+SS组内,而对配伍组设计的资料,总变异除了分解为处理组变异和随机误差外还包括配伍组变异,即:SS总=SS处理+SS配伍+SS误差。基本步骤整个方差分析的基本步骤如下:1、建立检验假设;H0:多个样本总体均值相等;H1:多个样本总体均值不相等或不全等。检验水准为0.05。2、计算检验统计量F值;3、确定P值并作出推断结果。
假设检验/方差分析
1. 方差分析的假定条件为:(1)各处理条件下的样本是随机的。(2)各处理条件下的样本是相互独立的,否则可能出现无法解析的输出结果。(3)各处理条件下的样本分别来自正态分布总体,否则使用非参数分析。(4)各处理条件下的样本方差相同,即具有齐效性。2. 方差分析的假设检验假设有K个样本,如果原假设H0样本均数都相同,K个样本有共同的方差σ ,则K个样本来自具有共同方差σ和相同均值的总体。如果经过计算,组间均方远远大于组内均方,则推翻原假设,说明样本来自不同的正态总体,说明处理造成均值的差异有统计意义。否则承认原假设,样本来自相同总体,处理间无差异。应用条件:各样本是相互独立的随机样本各样本均来自正态分布总体3. 各样本的总体方差相等,即具有方差齐性4.在不满足正态性时可以用非参数检验
分类举例/方差分析
单因素单因素方差分析:(一)单因素方差分析概念理解步骤是用来研究一个控制变量的不同水平是否对观测变量产生了显着影响。这里,由于仅研究单个因素对观测变量的影响,因此称为单因素方差分析。例如,分析不同施肥量是否给农作物产量带来显着影响,考察地区差异是否影响妇女的生育率,研究学历对工资收入的影响等。这些问题都可以通过单因素方差分析得到答案。单因素方差分析的第一步是明确观测变量和控制变量。例如,上述问题中的观测变量分别是农作物产量、妇女生育率、工资收入;控制变量分别为施肥量、地区、学历。单因素方差分析的第二步是剖析观测变量的方差。方差分析认为:观测变量值的变动会受控制变量和随机变量两方面的影响。据此,单因素方差分析将观测变量总的离差平方和分解为组间离差平方和和组内离差平方和两部分,用数学形式表述为:SST=SSA+SSE。单因素方差分析的第三步是通过比较观测变量总离差平方和各部分所占的比例,推断控制变量是否给观测变量带来了显着影响。(二)单因素方差分析原理总结容易理解:在观测变量总离差平方和中,如果组间离差平方和所占比例较大,则说明观测变量的变动主要是由控制变量引起的,可以主要由控制变量来解释,控制变量给观测变量带来了显着影响;反之,如果组间离差平方和所占比例小,则说明观测变量的变动不是主要由控制变量引起的,不可以主要由控制变量来解释,控制变量的不同水平没有给观测变量带来显着影响,观测变量值的变动是由随机变量因素引起的。(三)单因素方差分析基本步骤1、提出原假设:H0——无差异;H1——有显着差异2、选择检验统计量:方差分析采用的检验统计量是F统计量,即F值检验。3、计算检验统计量的观测值和概率P值:该步骤的目的就是计算检验统计量的观测值和相应的概率P值。4、给定显着性水平,并作出决策(四)单因素方差分析的进一步分析在完成上述单因素方差分析的基本分析后,可得到关于控制变量是否对观测变量造成显着影响的结论,接下来还应做其他几个重要分析,主要包括方差齐性检验、多重比较检验。1、方差齐性检验是对控制变量不同水平下各观测变量总体方差是否相等进行检验。前面提到,控制变量不同水平下观测变量总体方差无显着差异是方差分析的前提要求。如果没有满足这个前提要求,就不能认为各总体分布相同。因此,有必要对方差是否齐性进行检验。SPSS单因素方差分析中,方差齐性检验采用了方差同质性(homogeneity of variance)检验方法,其原假设是:各水平下观测变量总体的方差无显着差异。2、多重比较检验单因素方差分析的基本分析只能判断控制变量是否对观测变量产生了显着影响。如果控制变量确实对观测变量产生了显着影响,进一步还应确定控制变量的不同水平对观测变量的影响程度如何,其中哪个水平的作用明显区别于其他水平,哪个水平的作用是不显着的,等等。例如,如果确定了不同施肥量对农作物的产量有显着影响,那么还需要了解10公斤、20公斤、30公斤肥料对农作物产量的影响幅度是否有差异,其中哪种施肥量水平对提高农作物产量的作用不明显,哪种施肥量水平最有利于提高产量等。掌握了这些重要的信息就能够帮助人们制定合理的施肥方案,实现低投入高产出。多重比较检验利用了全部观测变量值,实现对各个水平下观测变量总体均值的逐对比较。由于多重比较检验问题也是假设检验问题,因此也遵循假设检验的基本步骤。检验构造方法(1)LSD方法LSD方法称为最小显着性差异(Least Significant Difference)法。最小显着性差异法的字面就体现了其检验敏感性高的特点,即水平间的均值只要存在一定程度的微小差异就可能被检验出来。正是如此,它利用全部观测变量值,而非仅使用某两组的数据。LSD方法适用于各总体方差相等的情况,但它并没有对犯一类错误的概率问题加以有效控制。(2)S-N-K方法S-N-K方法是一种有效划分相似性子集的方法。该方法适合于各水平观测值个数相等的情况,3、其他检验(1)先验对比检验在多重比较检验中,如果发现某些水平与另外一些水平的均值差距显着,如有五个水平,其中x1、x2、x3与x4、x5的均值有显着差异,就可以进一步分析比较这两组总的均值是否存在显着差异,即1/3(x1+x2+x3)与1/2(x4+x5)是否有显着差异。这种事先指定各均值的系数,再对其线性组合进行检验的分析方法称为先验对比检验。通过先验对比检验能够更精确地掌握各水平间或各相似性子集间均值的差异程度。(2)趋势检验当控制变量为定序变量时,趋势检验能够分析随着控制变量水平的变化,观测变量值变化的总体趋势是怎样的,是呈现线性变化趋势,还是呈二次、三次等多项式变化。通过趋势检验,能够帮助人们从另一个角度把握控制变量不同水平对观测变量总体作用的程度。多因素多因素方差分析:(一)多因素方差分析基本思想多因素方差分析用来研究两个及两个以上控制变量是否对观测变量产生显着影响。这里,由于研究多个因素对观测变量的影响,因此称为多因素方差分析。多因素方差分析不仅能够分析多个因素对观测变量的独立影响,更能够分析多个控制因素的交互作用能否对观测变量的分布产生显着影响,进而最终找到利于观测变量的最优组合。例如:分析不同品种、不同施肥量对农作物产量的影响时,可将农作物产量作为观测变量,品种和施肥量作为控制变量。利用多因素方差分析方法,研究不同品种、不同施肥量是如何影响农作物产量的,并进一步研究哪种品种与哪种水平的施肥量是提高农作物产量的最优组合。(二)多因素方差分析的其他功能1、均值检验在SPSS中,利用多因素方差分析功能还能够对各控制变量不同水平下观测变量的均值是否存在显着差异进行比较,实现方式有两种,即多重比较检验和对比检验。多重比较检验的方法与单因素方差分析类似。对比检验采用的是单样本t检验的方法,它将控制变量不同水平下的观测变量值看做来自不同总体的样本,并依次检验这些总体的均值是否与某个指定的检验值存在显着差异。其中,检验值可以指定为以下几种:观测变量的均值(Deviation);第一水平或最后一个水平上观测变量的均值(Simple);前一水平上观测变量的均值(Difference);后一水平上观测变量的均值(Helmert)。2、控制变量交互作用的图形分析控制变量的交互作用可以通过图形直观分析。(三)多因素方差分析的进一步分析在上述案例中,已经对广告形式、地区对销售额的影响进行了多因素方差分析,建立了饱和模型。由分析可知:广告形式与地区的交互作用不显着,先进一步尝试非饱和模型,并进行均值比较分析、交互作用图形分析。1、建立非饱和模型2、均值比较分析3、控制变量交互作用的图形分析协方差协方差分析:(一)协方差分析基本思想协方差分析通过上述的分析可以看到,不论是单因素方差分析还是多因素方差分析,控制因素都是可控的,其各个水平可以通过人为的努力得到控制和确定。但在许多实际问题中,有些控制因素很难人为控制,但它们的不同水平确实对观测变量产生了较为显着的影响。例如,在研究农作物产量问题时,如果仅考察不同施肥量、品种对农作物产量的影响,不考虑不同地块等因素而进行方差分析,显然是不全面的。因为事实上有些地块可能有利于农作物的生长,而另一些却不利于农作物的生长。不考虑这些因素进行分析可能会导致:即使不同的施肥量、不同品种农作物产量没有产生显着影响,但分析的结论却可能相反。再例如,分析不同的饲料对生猪增重是否产生显着差异。如果单纯分析饲料的作用,而不考虑生猪各自不同的身体条件(如初始体重不同),那么得出的结论很可能是不准确的。因为体重增重的幅度在一定程度上是包含诸如初始体重等其他因素的影响的。(二)协方差分析的原理协方差分析将那些人为很难控制的控制因素作为协变量,并在排除协变量对观测变量影响的条件下,分析控制变量(可控)对观测变量的作用,从而更加准确地对控制因素进行评价。协方差分析仍然沿承方差分析的基本思想,并在分析观测变量变差时,考虑了协变量的影响,人为观测变量的变动受四个方面的影响:即控制变量的独立作用、控制变量的交互作用、协变量的作用和随机因素的作用,并在扣除协变量的影响后,再分析控制变量的影响。方差分析中的原假设是:协变量对观测变量的线性影响是不显着的;在协变量影响扣除的条件下,控制变量各水平下观测变量的总体均值无显着差异,控制变量各水平对观测变量的效应同时为零。检验统计量仍采用F统计量,它们是各均方与随机因素引起的均方比。(三)协方差分析的应用举例为研究三种不同饲料对生猪体重增加的影响,将生猪随机分成三组各喂养不同的饲料,得到体重增加的数据。由于生猪体重的增加理论上会受到猪自身身体条件的影响,于是收集生猪喂养前体重的数据,作为自身身体条件的测量指标。
显示方式: |
共有7个词条
万方数据期刊论文
稀有金属材料与工程
万方数据期刊论文
光谱学与光谱分析
万方数据期刊论文
现代生物医学进展
&|&相关影像
互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于。
登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和专业认证智愿者沟通。
此词条还可添加&
编辑次数:21次
参与编辑人数:18位
最近更新时间: 10:34:11
贡献光荣榜数据处理-单因素方差分析_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
数据处理-单因素方差分析
上传于||暂无简介
阅读已结束,如果下载本文需要使用1下载券
想免费下载本文?
定制HR最喜欢的简历
下载文档到电脑,查找使用更方便
还剩3页未读,继续阅读
定制HR最喜欢的简历
你可能喜欢单因素方差分析
单因素方差分析
单因素方差分析也称作一维方差分析。它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。One-Way ANOVA过程要求因变量属于正态分布总体。如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。如果几个因变量之间彼此不独立,应该用Repeated Measure过程。
调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表5-1所示。
表5-1 不同水稻品种百丛中稻纵卷叶螟幼虫数
水 稻 品 种
数据保存在“”文件中,变量格式如图5-1。
分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。
1)准备分析数据
在数据编辑窗口中输入数据。建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图5-1所示。或者打开已存在的数据文件“”。
2)启动分析过程
点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统
打开单因素方差分析设置窗口如图5-2。
图5-2 单因素方差分析窗口
3)设置分析变量
因变量: 选择一个或多个因子变量进入“Dependent List”框中。本例选择“幼虫”。
因素变量: 选择一个因素变量进入“Factor”框中。本例选择“品种”。
4)设置多项式比较
单击“Contrasts”按钮,将打开如图5-3所示的对话框。该对话框用于设置均值的多项式比较。
“Contrasts”对话框
定义多项式的步骤为:
均值的多项式比较是包括两个或更多个均值的比较。例如图5-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。单因素方差分析的“0ne-Way ANOVA”过程允许进行高达5次的均值多项式比较。多项式的系数需要由读者自己根据研究的需要输入。具体的操作步骤如下:
① 选中“Polynomial”复选项,该操作激活其右面的“Degree”参数框。
② 单击Degree参数框右面的向下箭头展开阶次菜单,可以选择“Linear”线性、“Quadratic”二次、“Cubic”三次、“4th”四次、“5th”五次多项式。
③ 为多项式指定各组均值的系数。方法是在“Coefficients”框中输入一个系数,单击Add按钮,“Coefficients”框中的系数进入下面的方框中。依次输入各组均值的系数,在方形显示框中形成―列数值。因素变量分为几组,输入几个系数,多出的无意义。如果多项式中只包括第一组与第四组的均值的系数,必须把第二个、第三个系数输入为0值。如果只包括第一组与第二组的均值,则只需要输入前两个系数,第三、四个系数可以不输入。
可以同时建立多个多项式。一个多项式的一组系数输入结束,激话“Next”按钮,单击该按钮后“Coefficients”框中清空,准备接受下一组系数数据。
如果认为输入的几组系数中有错误,可以分别单击“Previous”或“Next”按钮前后翻找出错的一组数据。单击出错的系数,该系数显示在编辑框中,可以在此进行修改,修改后单击“Change”按钮在系数显示框中出现正确的系数值。当在系数显示框中选中一个系数时,同时激话“Remove”按钮,单击该按钮将选中的系数清除。
④单击“Previous”或“Next”按钮显示输入的各组系数检查无误后,按“Continue”按钮确认输入的系数并返回到主对话框。要取消刚刚的输入,单击“Cancel”按钮;需要查看系统的帮助信息,单击“Help”按钮。
本例子不做多项式比较的选择,选择缺省值。
5)设置多重比较
在主对话框里单击“Post
Hoc”按钮,将打开如图5-4所示的多重比较对话框。该对话框用于设置多重比较和配对比较。方差分析一旦确定各组均值间存在差异显著,多重比较检测可以求出均值相等的组;配对比较可找出和其它组均值有差异的组,并输出显著性水平为0.95的均值比较矩阵,在矩阵中用星号表示有差异的组。
“Post Hoc Multiple Comparisons”对话框
(1)多重比较的选择项:
①方差具有齐次性时(Equal Variances Assumed),该矩形框中有如下方法供选择:
&&&&& LSD (Least-significant
difference) 最小显著差数法,用t检验完成各组均值间的配对比较。对多重比较误差率不进行调整。
&&&& Bonferroni (LSDMOD) 用t检验完成各组间均值的配对比较,但通过设置每个检验的误差率来控制整个误差率。
&&&& Sidak 计算t统计量进行多重配对比较。可以调整显著性水平,比Bofferroni方法的界限要小。
&&&& Scheffe 对所有可能的组合进行同步进入的配对比较。这些选择项可以同时选择若干个。以便比较各种均值比较方法的结果。
&&&& R-E-G-WF (Ryan-Einot-Gabriel-Welsch
F) 用F检验进行多重比较检验。
&&&& R-E-G-WQ
(Ryan-Einot-Gabriel-Welsch range test) 正态分布范围进行多重配对比较。
&&&& S-N-K (Student-Newmnan-Keuls) 用Student Range分布进行所有各组均值间的配对比较。如果各组样本含量相等或者选择了
“Harmonic average of all groups”即用所有各组样本含量的调和平均数进行样本量估计时还用逐步过程进行齐次子集(差异较
&&&&&&& 小的子集)的均值配对比较。在该比较过程中,各组均值从大到小按顺序排列,最先比较最末端的差异。
&&&& Tukey (Tukey's,honestly signicant difference) 用Student-Range统计量进行所有组间均值的配对比较,用所有配对比较误
差率作为实验误差率。
&&&& Tukey's-b
用“stndent Range”分布进行组间均值的配对比较。其精确值为前两种检验相应值的平均值。
&&&& Duncan (Duncan's multiple range
test) 新复极差法(SSR),指定一系列的“Range”值,逐步进行计算比较得出结论。
&&&& Hochberg's GT2 用正态最大系数进行多重比较。
&&&& Gabriel 用正态标准系数进行配对比较,在单元数较大时,这种方法较自由。
&&&& Waller-Dunca
用t统计量进行多重比较检验,使用贝叶斯逼近。
&&&& Dunnett 指定此选择项,进行各组与对照组的均值比较。默认的对照组是最后一组。选择了该项就激活下面的“Control
Category”参数框。展开下拉列表,可以重新选择对照组。
&&&& “Test”框中列出了三种区间分别为:
“2-sides”
“&Control”
“&Conbo1”“右边检验。
②方差不具有齐次性时(Equal Varance not assumed),检验各均数间是否有差异的方祛有四种可供选择:
Tamhane's T2,
t检验进行配对比较。
Dunnett's T3,采用基于学生氏最大模的成对比较法。
Games-Howell,Games-Howell比较,该方法较灵活。
Dunnett's C,采用基于学生氏极值的成对比较法。
③ Significance 选择项,各种检验的显著性概率临界值,默认值为0.05,可由用户重新设定。
本例选择“LSD”和“Duncan”比较,检验的显著性概率临界值0.05。
6) 设置输出统计量
单击“Options”按钮,打开“Options”对话框,如图5-5所示。选择要求输出的统计量。并按要求的方式显示这些统计量。在该对话框中还可以选择对缺失值的处理要求。各组选择项的含义如下:
图5-5输出统计量的设置
“Statistics”栏中选择输出统计量:
&&&&&& Descriptive,要求输出描述统计量。选择此项输出观测量数目、均值、标准差、标准误、最小值、最大值、各组中每个因变量
&&&&&&&&&&&
的95%置信区间。
&&&&& Fixed and random effects, 固定和随机描述统计量
&&&&&Homogeneity-of-variance,要求进行方差齐次性检验,并输出检验结果。用“Levene lest ”检验,即计算每个观测量与其组均
&&&&&&&&&&&
值之差,然后对这些差值进行一维方差分析。
Brown-Forsythe 布朗检验
&&&&& Welch,韦尔奇检验
Means plot,即均数分布图,根据各组均数描绘出因变量的分布情况。
“Missing Values”栏中,选择缺失值处理方法。
&&&&& Exclude cases
analysis by analysis选项,被选择参与分析的变量含缺失值的观测量,从分析中剔除。
&&&&& Exclude cases listwise选项,对含有缺失值的观测量,从所有分析中剔除。
以上选择项选择完成后,按“Continue”按钮确认选择并返回上一级对话框;单击“Cancel”按钮作废本次选择;单击“Help”按钮,显示有关的帮助信息。
本例子选择要求输出描述统计量和进行方差齐次性检验,缺失值处理方法选系统缺省设置。
6)提交执行
设置完成后,在单因素方差分析窗口框中点击“OK”按钮,SPSS就会根据设置进行运算,并将结算结果输出到SPSS结果输出窗口中。
7) 结果与分析
输出结果:
表5-2描述统计量,给出了水稻品种分组的样本含量N、平均数Mean、标准差Std.Deviation、标准误Std.Error、95%的置信区间、最小值和最大值。
表5-3为方差齐次性检验结果,从显著性慨率看,p&0.05,说明各组的方差在a=0.05水平上没有显著性差异,即方差具有齐次性。这个结论在选择多重比较方法时作为一个条件。
表5-4方差分析表:第1栏是方差来源,包括组间变差“Between Groups”;组内变差“Within Groups”和总变差“Total”。第2栏是离差平方和“Sum
of Squares”,组间离差平方和87.600,组内离差平方和为24.000,总离差平方和为111.600,是组间离差平方和与组内离差平方和相加之和。第3栏是自由度df,组间自由度为4,组内自由度为10;总自由度为14。第4栏是均方“Mean Square”,是第2栏与第3栏之比;组间均方为21.900,组内均方为2.400。第5栏是F值9.125(组间均方与组内均方之比)。第6栏:F值对应的概率值,针对假设H0:组间均值无显著性差异(即5种品种虫数的平均值无显著性差异)。计算的F值9.125,对应的概率值为0.002。
表5-5 LSD法进行多重比较表,从表5-4结论已知该例子的方差具有其次性,因此LSD方法适用。第1栏的第1列“[i]品种”为比较基准品种,第2列“[j]品种”是比较品种。第2栏是比较基准品种平均数减去比较品种平均数的差值(Mean Difference),均值之间具有0.05水平(可图5-4对话框里设置)上有显著性差异,在平均数差值上用“*”号表明。第3栏是差值的标准误。第4栏是差值检验的显著性水平。第5栏是差值的95%置信范围的下限和上限。
表5-6 是多重比较的Duncan法进行比较的结果。第1栏为品种,按均数由小到大排列。第2栏列出计算均数用的样本数。第3栏列出了在显著水平0.05上的比较结果,表的最后一行是均数方差齐次性检验慨率水平,p&0.05说明各组方差具有齐次性。
多重比较比较表显著性差异差异的判读:在同一列的平均数表示没有显著性差异,反之则具有显著性的差异。例如,品种3横向看,平均数显示在第3列“2”小列,与它同列显示的有品种2的平均数,说明与品种2差异不显著(0.05水平),再往右看,平均数显示在第3列“3”小列,与它同列显示的有品种4的平均数,说明与品种4差异不显著(0.05水平)。则品种3与品种5和品种1具有显著性的差异(0.05水平)。
品种3和品种4都显示有平均数值。
根据方差分析表输出的p值为0.002可以看出,无论临界值取0.05,还是取0.01,p值均小于临界值。因此否定Ho假设,水稻品种对稻纵卷叶螟幼虫抗虫性有显著性意义,结论是稻纵卷叶螟幼虫数量的在不同品种间有明显的不同。根据该结论选择抗稻纵卷叶螟幼虫水稻品种,犯错误的概率几乎为0.008。
只有在方差分析中F检验存在差异显著性时,才有比较的统计意义。
LSD法多重比较表明:
品种1与品种2、品种3和品种5之间存在显著性差异;
品种2与品种1和品种4之间存在显著性差异;
品种3与品种1和品种5之间存在显著性差异;
品种4与品种2和品种5之间存在显著性差异;
品种5与品种1、品种3和品种4之间存在显著性差异。
Duncan法多重比较表明:
品种5与品种3、品种4和品种1之间存在显著性差异。
品种2与品种4和品种1之间存在显著性差异;
品种3与品种5和品种1之间存在显著性差异;
品种4与品种5和品种2之间存在显著性差异;
品种1与品种5、品种2和品种3之间存在显著性差异;
两种方法比较结果一致。

我要回帖

更多关于 单因素方差分析实例 的文章

 

随机推荐